## **Guidance for reviewing FUNDAMENTAL RESEARCH abstracts:** - (1) Novelty: How novel is the SPH development to be presented this year compared with established state-of-the-art? - (2) Applicability / expected impact: Does the new research have high applicability in problems that could not be solved before or can now be solved with higher accuracy? Can this work encourage new developments and new applications? - (3) Improvements / quality of results: Does this work provide better results over the state-of-the-art (comparing with experiments, with previous SPH formulations or with other numerical solutions)? Does the new implementation present high efficiency when accelerating SPH code without losing accuracy? Does this work include a convergence analysis (if appropriate)? | | 0 points | 1 point | 2 points | 3 points | 4 points | 5 points | |-----------------------------------|-------------------------------------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------| | Novelty | No information / zero novelty | Difficult to assess novelty | Some novelties evident, but not clearly presented | Novel developments compared with literature | Very novel developments compared with literature | Completely novel. Never shown before | | Applicability / expected impact | No information / zero applicability | Difficult to assess applicability | Same problems as<br>before can be<br>studied now | Problems can be solved now with higher accuracy | Problems could not be solved before | Problems could not be solved before and with higher accuracy | | Improvements / quality of results | No information / zero improvement | Less accurate results over the state-of-the-art | Same accuracy of results in the state-of-the-art | Better results over<br>the state-of-the-art | High predictive accuracy or efficiency over the state-of-the-art | Highest predictive accuracy or efficiency, not shown before | ## **Guidance for reviewing of INDUSTRIAL APPLICATIONS abstracts:** - (1) Novelty: Is it a novel application? Does this work lead to new knowledge in the field of the application? Is it the first time the industry has tried applying the SPH technique to this problem? - (2) Usability: Is it feasible/accessible for a non-specialist SPH engineer/modeller? Is SPH easy to use on this application compared to the modelling state-of-the-art? What is the time required to define the numerical setup (including pre and post-processing) compared to the state-of-the-art? Is the formulation/technique numerically robust and free of tuning parameters? - (3) Competitiveness: How does it compare with standard industrial modelling software tools? Does SPH provide a solution for this application that can not be obtained by traditional methods? What is the level of accuracy compared with results obtained with the state of the art in CFD? How does computational time, resources and power consumption (green computing) compare to classical schemes? | | 0 points | 1 point | 2 points | 3 points | 4 points | 5 points | |-----------------|-----------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------| | Novelty | No information / zero novelty | Difficult to assess novelty in industry | Novelties to apply<br>SPH in industry are<br>evident, but not<br>clearly presented | Novel work compared with applications shown before | Very novel application that helps to obtain new insights | Completely novel that leads to new knowledge | | Usability | No information / zero usability | Not enough info about the usability | Same usability in the standard CFD/CM/CSM | Better usability over<br>the standard<br>CFD/CM/CSM | High usability over the standard CFD/CM/CSM | Breakthrough | | Competitiveness | No information / zero improvement | Difficult to assess competitiveness in industry | Competitive but not better than traditional methods | More competitive than traditional methods | Significantly better time / accuracy / resources than traditional methods | Breakthrough |