工作单位:海洋工程与技术学院
专业资格:教授(博士生导师)
行政职务:院长助理
电子邮箱:caihy7@mail.sysu.edu.cn
研究方向:海洋环境监测与大数据应用
个人详细信息介绍
一、主要经历
教育经历:
[1] 2004年09月-2008年07月,中山大学地理科学专业,理学学士
[2] 2008年09月-2010年07月,中山大学自然地理专业,理学硕士,导师:杨清书 教授
[3] 2010年09-2014年09月, 荷兰代尔夫特理工大学(Delft University of Technology)水资源管理,工学博士,导师: Prof. Huub H. G. Savenije
工作经历:
[1] 2014年10月-2015年09月,新加坡国立大学(National University of Singapore),博士后
[2] 2015年09月-2018年11月,中山大学海洋科学学院,“百人计划二期”人才引进,副教授
[3] 2018年11月-2023年6月,中山大学海洋工程与技术学院,副教授
[4] 2023年6月-至今,中山大学海洋工程与技术学院,教授
社会兼职:
[1] 担任《Frontiers in Earth Science》编委
[2] 担任《Sustainable Horizons》编委
[3] 担任Journal of Geophysical Research、Hydrology and Earth System Sciences、Journal of Hydrology等10余种SCI期刊的论文审稿人
[4] 担任国家自然科学基金、中国博士后科学基金等评审专家
二、荣誉与奖励情况
[1] 《Coastal Engineering Journal》2016年度优秀论文奖
[2] 2022年中山大学优秀班主任
三、人才培养与任课情况
招生专业和数量:
每年招收船舶与海洋工程/物理海洋学专业/土木水利/资源与环境研究生2-3名
任课情况:
1. 本科教学
[1] 河口河床演变学
[2] 物理海洋学
[3] 海岸动力学实验
2. 研究生课程
[1] 高级物理海洋学
[2] 高等河口海岸动力学
3. 实践性教学
[1] 海洋工程与技术专业本科生专业实习
4. 教学成果
[1] 《“基础理论—仿真技术—应用实践”全链条的海洋工程复合型领军人才培养创新实践》荣获2021年中山大学校级教学成果奖二等奖
[2] 《河口河床演变学》入选2022年校级线上线下混合式一流本科课程
[3] 蔡华阳, 欧素英, 罗向欣, 傅林曦. 《海岸动力学实验》. 中山大学出版社, 2021.11, 广州
[4] 蔡华阳, 杨清书. 《河口动力学理论与实践》. 中山大学出版社, 2019.10, 广州
[5] 蔡华阳,李博,李海威,孙鹏楠. 自主研发数值波浪水槽及其在海洋工程与技术专业实验教学中的应用,高教学刊,2021,7(34)
[6] 蔡华阳, 张萍, 欧素英. 以探索性、实践性、综合性为导向的实习模式探索——以海洋工程与技术专业为例,教育教学论坛,2022,12
[7] 蔡华阳, 傅林曦, 欧素英. 海洋大数据及其可视化在课程教学中的应用——以“物理海洋学”为例,教育教学论坛,2022,28
四、主持/参与项目
[1] 2023.01-2026.12,国家自然科学基金面上项目,54万,异变格局下珠江河网纵横水道径潮动力自适应调整机制,项目号:52279080,在研,主持
[2] 2020.01-2023.12,国家自然科学基金面上项目,61万,珠江河网横向汊道动力功能的自适应调整及稳态机制研究,项目号:51979296,在研,主持
[3]2023.01-2026.12,广东省自然科学基金-卓越青年团队项目,300万,粤港澳大湾区城市水灾害智慧管理与防控,项目号:2023B1515040028,在研,参与
[4]2020.04-2023.03,广州市科技计划项目,20万,珠江河网横向汊道独特地貌单元的动力功能研究——以平洲水道为例,项目号:202002030452,已结题,主持
[5]2018.01-2020.12,国家自然科学基金青年基金,25万,珠江磨刀门河口径潮动力异变格局下余水位的形成变化机制,项目号:51709287,已结题,主持
[6]2017.05-2020.04,广东省自然科学基金-博士科研启动项目(纵向协同管理试点项目),10万,珠江磨刀门河口基于余水位的径潮动力非线性耦合机制研究,项目号:2017A030310321,已结题,主持
[7]2017.05-2018.12,中山大学青年教师重点培育项目,30万,珠江磨刀门河口营养盐纵向输移动力机制, 项目号:17lgzd12,已结题,主持
[8]2018.08-2020.07,河口海岸学国家重点实验室开放课题基金资助项目,8万,长江与珠江磨刀门河口余水位形成变化机制, 项目号:SKLEC-KF201809,已结题,主持
[9]2020.01-2021.12, 洞庭湖水环境治理与生态修复湖南省重点实验室开放基金资助项目,2万,三峡大坝调蓄对洞庭湖水温的影响与定量化研究,项目号:2020DT001, 已结题,主持
[10]2016.07-2021.06,国家重点研发计划“水资源高效开发利用”专项,2400万,珠江河口与河网演变机制及治理研究,项目号:2016YFC0402600,已结题,参与
[11]2016.04-2018.12,广东省水利科技创新项目,109.9万,珠江强咸潮区典型河口蓄淡水库战略储备关键技术研究,项目号:2016-20,已结题,参与
五、学术论文及专利
2023年
[1]Cai, H., Wang, Y., Zhao, T. and Zhang, H* (2023). A general unit hydrograph distribution and its application to the marginal distribution of global wind speed. Sustainable Horizons, 6, 100056. https://doi.org/10.1016/j.horiz.2023.100056.
[2]Cai, H., Li, B., Erwan, G., Pan, H., Zhao, T., Liu, F., Ma, Y. and Ou, S.* (2023), A data-driven model to quantify the impact of river discharge on tide-river dynamics in the Yangtze River estuary, Journal of Hydrology, 620,129411, https://doi.org/10.1016/j.jhydrol.2023.129411.
[3]Cai, H., Li, B., Junhao, Gu, Tongtiegang, Zhao, Erwan, G.* (2023), Extension of the general unit hydrograph theory for the spread of salinity in estuaries, Ocean Science, 19,603-614, https://doi.org/10.5194/os-19-603-2023.
2022年
[1]Cai, H., Yang, H., Pascal, M., Pan, H., Hu, Z., Zhao, T. and Liu, G.* (2022), Quantifying the impacts of the Three Gorges Dam on the spatial–temporal water level dynamics in the upper Yangtze River estuary, Ocean Science,18,1691-1702, https://doi.org/10.5194/os-18-1691-2022.
[2]李博, 杨昊, 欧素英, 蔡华阳*, 刘锋, 杨清书. 珠江磨刀门河口潮波振幅梯度与上下游动力边界的关系异变研究, 海洋与湖沼, 2022, 53(3), 513-527.
[3]王博芝, 李博, 魏稳, 欧素英, 蔡华阳*, 杨清书. 珠江河网典型横向汊道水面线演变及成因, 浙江大学学报(工学版), 2022, 56(7), 1375-1384.
[4]古俊豪, 蔡华阳*, 杨昊, 李博. 河口回水动力的演变过程及其影响机制, 海洋学报, 2022, 44(12),31-41.
[5]潘惠敏, 蔡华阳*, 王博芝, 张萍, 姚宇. 1973-2020年洞庭湖水温演变特征分析, 湖泊科学, 2023, 35(1):326-337.
[6]邱秀芳, 李博, 王博芝, 古俊豪, 王辑思, 苏雅楠, 蔡华阳*. 珠江河网典型横向汊道径潮动力时空差异性分析——以“南沙-南华”横向汊道为例, 热带海洋学报, 2022, 已接收.
[7]李博, 蔡华阳*,杨昊, 王博芝, 刘锋, 魏稳, 欧素英.珠江河网横向汊道水位演变特性及原因探究, 海洋与湖沼, 2023, 54(2),1-18.
2021年
[1] Zhang, M., Dai, Z., Bouma, T.J., Bricker, J., Townend, I., Wen, J., Zhao, T., Cai, H.*, Tidal-flat reclamation aggravates potential risk from storm impacts, Coastal Engineering, 2021, 166, 103868.
[2] Zhang, P., Yang, Q., Wang, H., Cai, H.*, Liu, F., Zhao, T., Jia, L., Stepwise alterations in tidal hydrodynamics in a highly human-modified estuary: The roles of channel deepening and narrowing, Journal of Hydrology, 2021, accepted.
[3] Zhang, P., Yang, Q., Pan, H., Xie, M., Cai, H.*, Chu, N., Jia, L., Impacts of human interventions on the seasonal dynamics of the M2 and K1 tides in Lingdingyang Bay of the Pearl River Delta, China, Acta Oceanologica Sinica, 2021, accepted.
[4] Garel, E., Zhang, P., Cai, H.*, Dynamics of fortnightly water level variations along a tide-dominated estuary with negligible river discharge, Ocean Science, 2021, 17, 1605-1621, https://doi.org/10.5194/os-17-1605-2021.
[5] 谢梅芳, 张萍, 杨昊, 傅林曦, 王恒, 蔡华阳*, 杨清书. 珠江“伶仃洋河口湾-虎门-潮汐通道”的潮波传播特征, 热带海洋学报, 2021, 40(4), 1-13.
[6] 王博芝, 杨昊, 欧素英, 傅林曦, 蔡华阳*, 杨清书. 珠江河网横向汊道水面线演变过程及原因探讨—以东平水道为例, 热带地理, 2021, 41(2), 410-422.
2020年
[1] Cai, H., Zhang, P., Garel, E., Matte, P., Hu, S., Liu, F.*, Yang, Q. (2020), A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries, Hydrology and Earth System Sciences, 24, 1871–1889, https://doi.org/10.5194/hess-24-1871-2020.
[2] Wang, H., Zhang, P., Hu, S., Cai, H.*, Fu, L., Liu, F., Yang, Q. (2020), Tidal regime shift in Lingdingyang Bay, the Pearl River Delta: an identification and assessment of driving factors, Hydrological Processes, 34(13): 2878-2894, doi: 10.1002/hyp.13773.
[3] Yang, H., Zhang, X., Cai, H.*, Hu, Q., Liu, F., Yang, Q. (2020). Seasonal changes in river-tide dynamics in a highly human-modified estuary: Modaomen Estuary case study, Marine Geology, 427, 106273, https://doi.org/10.1016/j.margeo.2020.106273.
[4] Zhang, M., Yang, H., Tang, Q., Cai, H.*, Zhu, Z., Feng, A., Luo, M., Gao, H., Tian, X. (2020). Impacts of secondary and quarter-diurnal tidal species on backwater hydrodynamics in tidal rivers, Advances in Water Resources, 143, 103660, https://doi.org/10.1016/j.advwatres.2020.103660.
[5] 张萍,谢梅芳,杨昊,蔡华阳*,欧素英,杨清书. 潮优型河口动力对水深变化的响应机制研究——以葡萄牙Guadiana河口为例. 热带海洋学报, 2020, 39(1):1-11.
[6] 黄竞争,张先毅,吴峥,刘锋,蔡华阳*,杨清书. 长江感潮河段潮波传播变化特征及影响因素分析,海洋学报,2020,42(3): 25-35.
[7] 杨昊,欧素英,傅林曦,刘锋,蔡华阳*,杨清书. 珠江磨刀门河口日均水位变化及影响因子辨识, 水利学报, 2020,50(7):869-881.
[8] 张先毅,杨昊,黄竞争,傅林曦,王恒,刘俊勇,欧素英,刘锋,蔡华阳*,杨清书. 强人类活动驱动下珠江磨刀门河口径潮动力的季节性异变特征分析,海洋与湖沼,2020,51(5):1043-1054.
[9] 蔡华阳,杨清书. 《河口潮波动力学》. 科学出版社,2020.11,北京.
2019年
[1] Cai, H., Yang, H., Liu, J., Niu, L., Ren, L., Liu, F., Ou, S.*, Yang, Q. (2019), Quantifying the impacts of human interventions on relative mean sea level change in the Pearl River Delta, China, Ocean and Coastal Management, 173, 52-64, https://doi.org/10.1016/j.ocecoaman.2019.02.007.
[2] Liu, F., Xie, R., Luo, X., Yang, L., Cai, H.*, Yang, Q. (2019), Stepwise adjustment of deltaic channels in response to human interventions and its hydrological implications for sustainable water managements in the Pearl River Delta, China, Journal of Hydrology, 573, 194-206, https://doi.org/10.1016/j.jhydrol.2019.03.063.
[3] Cai, H., Zhang, X., Guo, L., Zhang, M.*, Liu, F., and Yang, Q. (2019), Impacts of Three Gorges Dam's operation on spatial-temporal patterns of tide-river dynamics in the Yangtze River estuary, China, Ocean Science,15,583-599, https://doi.org/ 10.5194/os-15-583-2019.
[4] Cai, H., Savenije, H. H. G., Garel, E., Zhang, X., Guo, L., Zhang, M., Liu, F.*, and Yang, Q.: Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: identifying the critical position and river discharge for maximum tidal damping, Hydrology and Earth System Sciences, 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019.
[5] 杨昊,欧素英,姚鹏,郭晓娟,杨清书,蔡华阳*. 河口区斜压梯度对余水位的累积影响及其机制探讨.海洋学报,2019, 41(1):21-31.
[6] 唐雨佳,黄竞争,刘锋,蔡华阳*. 基于数据驱动模型的河流水温异变研究. 水文,2019,39(1):50-55.
[7] 张先毅,黄竞争,杨昊,欧素英,刘锋,蔡华阳*,杨清书. 长江河口潮波传播机制及阈值效应分析. 海洋与湖沼, 2019, 50(4):788-798.
2018年
[1] Cai, H., Yang, Q., Zhang, Z., Guo, X., Liu, F., Ou, S.* (2018), Impact of river-tide dynamics on the temporal-spatial distribution of residual water levels in the Pearl River channel networks, Estuaries and Coasts, 41(7), 1885-1903, https://doi.org/10.1007/s12237-018-0399-2.
[2] Cai, H., Piccolroaz, S., Huang, J., Liu, Z., Liu, F.*, Toffolon, M. (2018), Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River, Environmental Research Letters, 13, 054016, https://doi.org/10.1088/1748-9326/aab9e0.
[3] Cai, H., Toffolon, M., Savenije, H.H.G., Yang, Q., Garel, E.* (2018), Frictional interactions between tidal constituents in tide-dominated estuaries, Ocean Science, 14, 769-782, doi:10.5194/os-14-769-2018.
[4] Cai, H., Huang, J., Niu, L., Ren, L., Liu, F., Ou, S.*, Yang, Q. (2018), Decadal variability of tidal dynamics in the Pearl River Delta: spatial patterns, causes, and implications for estuarine water management, Hydrological Processes,32(25), 3805-3819, doi: 10.1002/hyp.13291.
[5] Liu, Z., Chen, X., Liu, F., Lin, K., He, Y., Cai, H. *(2018), Joint dependence between river water temperature, air temperature, and discharge in the Yangtze River: The role of the Three Gorges Dam, Journal of Geophysical Research-Atmosphere,doi: 10.1029/2018JD029078.
[6] Liu, F., Hu, S., Guo, X., Cai, H.*, Yang, Q. (2018), Recent changes in the sediment regime of the Pearl River (South China): Causes and implications for the Pearl River Delta, Hydrological Processes, 32(12), 1771-1785, https://doi.org/10.1002/hyp.11513.
[7] Hu Z., van der Wal, D., Cai, H.*, van Belzen, J., Bouma, T. J.* (2018), Dynamic equilibrium behaviour observed on two contrasting tidal flats from daily monitoring of bed-level changes, Geomorphology, 311, 114-126, https://doi.org/10.1016/j.geomorph.2018.03.025.
[8] Liu, F., Hu, S., Guo, X., Niu, L., Cai, H.*, Yang, Q. (2018), Impacts of estuarine mixing on vertical dispersion of polycyclic aromatic hydrocarbons (PAHs) in a tide-dominated estuary, Marine Pollution Bulletin, 131, 276-283, https://doi.org/10.1016/j.marpolbul.2018.04.036.
[9] Garel, E., Cai, H.* (2018), Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary, Estuaries and Coasts, 41(7), 1924-1942, https://doi.org/10.1007/s12237-018-0410-y.
[10] Niu, L., Cai, H.*, P.H.A.J.M.Van Gelder, Luo, P., Liu, F., Yang, Q. (2018). Dynamics of polycyclic aromatichydrocarbons (PAHs) in water column of Pearl River estuary (China): Seasonal pattern, environmental fate and source implication, Applied Geochemistry, 90:39-49, https://doi.org/10.1016/j.apgeochem.2017.12.014.
[11] 蔡华阳,杨昊,郭晓娟,杨清书,欧素英*. 珠江磨刀门河口径潮动力耦合条件下余水位的多时空尺度分析. 海洋学报,2018, 40(7):55-65.
2018年以前
[1] Moon-Jin, P., Savenije, H. H. G., Cai, H.*, Eui, K. J., Nam, H. K. (2017), Progressive change of tidal wave characteristics from the eastern Yellow Sea to the Asan Bay, a strongly convergent bay in the west coast of Korea, Ocean Dynamics, 67:1137-1150, doi:10.1007/s10236-017-1078-8.
[2] Cai, H.*, Savenije, H.H.G., Gisen, J.I.A. (2016), A coupled analytical model for salt intrusion and tides in alluvial estuaries, Hydrological Sciences Journal, 61, 402-419, doi:10.1080/02626667.2015.1027206.
[3] Cai, H., Savenije, H. H. G., Jiang, C. Zhao L., Yang Q.* (2016), Analytical approach for determining the mean water level profile in an estuary with substantial fresh water discharge, Hydrology and Earth System Sciences, 20, 1-19, doi:10.5194/hess-20-1-2016.
[4] Cai, H.*, Toffolon, M., Savenije, H. H. G. (2016), An analytical approach to determining resonance in semi-closed convergent tidal channels, Coastal Engineering Journal, doi: 10.1142/S0578563416500091.
[5] Cai, H., Savenije, H.H.G., Zuo S. Jiang C., Chua V. *(2015), A predictive model for salt intrusion in estuaries applied to the Yangtze estuary, Journal of Hydrology, 529, 1336-1349, doi:10.1016/j.jhydrol.2015.08.050.
[6] Cai, H.*, Savenije, H.H.G., Toffolon, M. (2014), Linking the river to the estuary: influence of river discharge on tidal damping, Hydrology and Earth System Sciences, 18, 287-304, doi:10.5194/hess-18-287-2014.
[7] Cai, H.*, Savenije, H. H. G., Jiang, C. (2014), Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations, Hydrology and Earth System Sciences, 18, 4153-4168, doi:10.5194/hess-18-4153-2014.
[8] Cai, H., Savenije, H.H.G.* (2013), Asymptotic behavior of tidal damping in alluvial estuaries, Journal of Geophysical Research, 118, 1-16, doi:10.1002/2013JC008772.
[9] Cai, H.*, Savenije, H.H.G., Toffolon, M. (2012), A new analytical framework for assessing the effect of sea-level rise and dredging on tidal damping in estuaries, Journal of Geophysical Research, 117, C09023, doi:10.1029/2012JC008000.
[10] Cai, H.*, Savenije, H.H.G., Yang, Q., Ou, S., Lei, Y. (2012), Influence of river discharge and dredging on tidal wave propagation: Modaomen estuary case, Journal of Hydraulic Engineering, 138, 885-896, doi:10.1061/(ASCE)HY.1943-7900.0000594.
合作文章
[1] Jiang, C., Yang, Q.*, Cai, H. (2022), The evolution of wave impacts on the anthropogenically altered Modaomen Estuary in the Pearl River Delta, Earth Surface Processes and Landforms, 47(5), 1183-1195.
[2] Huang, Z., Zhao, T.*, Xu, W., Cai, H., Wang, J., Zhang, Y., Liu, Z., Tian, Y., Yan, D., Chen, X. (2022), A seven-parameter Bernoulli-Gamma-Gaussian model to calibrate subseasonal to seasonal precipitation forecasts, Journal of Hydrology, 610, 127896.
[3] Zhao, T., Chen, H., Pan, B., Ye, L., Cai, H., Zhang, Y., Chen, X. (2022), Correspondence relationship between ENSO teleconnection and anomaly correlation for GCM seasonal precipitation forecasts, Climate Dynamics, 58, 633-649.
[4] Huang, J., Wang, S., Li, X., Xie, R., Sun, J., Shi, B., Liu, F.*, Cai, H., Yang, Q., Zheng, Z. (2022), Effects of Shear Stress and Salinity Stratification on Floc Size Distribution During the Dry Season in the Modaomen Estuary of the Pearl River, Frontiers in Marine Science, 9, 836927.
[5] Liu, Z., Cheng, L., Lin, K.*, Cai, H. (2021). A hybrid Bayesian vine model for water level prediction, Environmental Modelling & Software, 142, 105075.
[6] Niu, L.*, Cai, H., Jia, L., Luo, X., Tao, W., Dong, Y., Yang, Q. (2021), Metal pollution in the Pearl River Estuary and implications for estuary management: The influence of hydrological connectivity associated with estuarine mixing, Ecotoxicology and Environmental Safety, 225, 112747.
[7] Mei, X., Dai, Z.*, Darby, S. E., Zhang, M., Cai, H., Wang, J., Wei, W. (2021). Landward shifts of the maximum accretion zone in the tidal reach of the Changjiang estuary following construction of the Three Gorges Dam, Journal of Hydrology, 592, 125789.
[8] Huang, Z., Zhao, T.*, Zhang, Y., Cai, H., Hou, A., Chen, X. (2021), A five-parameter Gamma-Gaussian model to calibrate monthly and seasonal GCM precipitation forecasts, Journal of Hydrology, 603(Part A), 126893.
[9] Lan, T., Lin, K., Xu, C.Y., Liu, Z., Cai, H. (2020). A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics, Hydrology and Earth System Sciences, 24, 5859–5874.
[10] Tao, W., Niu, L.*, Liu, F., Cai, H., Ou, S., Zeng, D., Lou, Q., Yang, Q. (2020). Influence of river-tide dynamics on phytoplankton variability and their ecological implications in two Chinese tropical estuaries, Ecological Indicators, 115, 106458.
[11] Zhao, T. T. G., Chen, H. L., Xu, W. X., Cai, H., Yan, D. H., Chen, X. H. (2020). Spatial association of anomaly correlation for GCM seasonal forecasts of global precipitation. Climate Dynamics, 55, 2273–2286.
[12] Chu, N., Yang, Q., Liu, F.*, Luo, X., Cai, H., Yuan, L., Huang, J., Li, J. (2020). Distribution of magnetic properties of surface sediment and its implications on sediment provenance and transport in Pearl River Estuary, Marine Geology, 424, 106162.
[13] Niu, L.*, Yang, Q., van Gelder, P., Zeng, D., Cai, H., Liu, F., Luo, X. (2020). Field analysis of PAHs in surface sediments of the Pearl River Estuary and their environmental impacts, Environmental Science and Pollution Research, 27: 10925-10938.
[14] Feng, A.*, Cai, H., You, Y. (2019). Freely floating body motion responses induced by wave and current in seabed conditions, Ocean Engineering, 172, 396-406.
[15] Liu, C., Yu, M.*, Cai, H., Chen, X. (2019), Recent changes in hydrodynamic characteristics of the Pearl River Delta during the flood period and associated underlying causes. Ocean and Coastal Management, 179, 104814.
[16] Liu, C., Yu, M.*, Jia, L., Cai, H., Chen, X. (2019), Impacts of physical alterations on salt transport during the dry season in the Modaomen Estuary, Pearl River Delta, China. Estuarine, Coastal and Shelf Science, in press.
[17] Luo, m., Reeve, D. E., Shao, S., Karunarathna, H., Lin, P.*, Cai, H. (2019), Consistent Particle Method simulation of solitary wave impinging on and overtopping a seawall, Engineering Analysis with Boundary Elements, 103, 160-171.
[18] Yang, L., Liu, F.*, Gong, W., Cai, H., Yu, F., Pan, H. (2019). Morphological response of Lingding Bay in the Pearl River Estuary to human intervention in recent decades. Ocean and Coastal Management, 176, 1-10.
[19] Zhang, M., Townend Ian, Cai, H., He, J., Mei, X.* (2018). The influence of seasonal climateon the morphology of the mouth-bar in the Yangtze Estuary, China. Continental Shelf Research, 153, 30-49.
[20] Gao, H., Cai, H., Duan, Z.* (2018), Understanding the impacts of catchment characteristics on the shape of the storage capacity curve and its influence on flood flows, Hydrology Research, 90-106, doi:10.2166/nh.2017.245.
[21] Feng, A., You, Y., Cai, H. (2018), An improved Rankine source panel method for three dimensional water wave problems, International Journal of Naval Architecture and Ocean Engineering , 11(1), 70-81.
[22] Xiao, Y., Wu, Z., Cai, H., Tang, H.* (2018), Suspended sediment dynamics in a well-mixed estuary: The role of high suspended sediment concentration (SSC) from the adjacent sea area, Estuarine, Coastal and Shelf Science, 209, 191-204.
[23] Chen Z.Y., W.P. Gong, Cai, H., Y.Z. Chen, H. Zhang (2017).Dispersal of the Pearl River plume over continental shelf in summer, Estuarine, Coastal and Shelf Science, 194, 252–262.
[24] Liu, F., Chen, H., Cai, H., Luo, X., Ou, S.*, Yang, Q. (2017), Impacts of ENSO on multi-scale variations in sediment discharge from the Pearl River to the South China Sea, Geomorphology, 293, 26-34.
[25] Li F, Lin Z-F, Wen J-S, WeiY-S, Gan H-Y, He H-J, Lin J-Q, Xia Z, Chen B-S*, Guo W-J, Tan C-S, Cai H. (2017). Risk assessment of trace metal-polluted coastal sediments on Hainan Island: A full scale set of 474 geographical locations covering the entire island. Marine Pollution Bulletin, 125:541-555.
[26] Zhang, M., Townend, I.*, Zhou, Y., Cai, H. (2016), Seasonal variation of river and tide energy in the Yangtze estuary, China, Earth Surface Processes and Landforms, 41(1), 98-116.
[27] Zhang, M., Townend, I., Cai, H., Zhou, Y. *(2016), Seasonal variation of tidal prism and energy in the Changjiang River estuary: A numerical study, Chinese Journal of Oceanology and Limnology, 34, 219-230.