工作单位:海洋工程与技术学院
专业资格:副教授、博士生导师
行政职务:院长助理
研究方向:船海流固耦合与资源开发技术
招生专业:船舶与海洋工程;力学;机械(欢迎感兴趣的同学发邮件交流)
一、个人详细信息介绍
孙鹏楠,中山大学副教授,博士生导师,院长助理,“海路通”超算中心主任。2018年于哈尔滨工程大学获博士学位;2015-2017年受国家公派在意大利国家研究理事会-海洋技术研究所(CNR-INSEAN)进行联合培养;2018-2020年在法国南特中央理工大学做博士后;2020年至今,在中山大学海洋工程与技术学院工作。主要从事船舶与海洋工程流固耦合动力学、光滑粒子流体动力学(SPH)理论与计算方法、CAE通用计算软件研发等方面的研究工作。主持国家自然科学基金面上项目、青年项目、国家重点研发子课题、广东省基金面上项目等10余项。研究成果在JCP、CMAME、POF、JFS、OE等期刊发表学术论文50余篇,其中ESI前1%高被引论文4篇,论文累计被引用1800余次。获2022 权威期刊EABE “Best Paper Award”奖、2020 SPH Online国际会议“Best Presentation Award”奖、连续获得“Journal of Hydrodynamics” 2018和2019年度高被引论文奖、SHERIC-2017国际会议“Best Student Paper Award”奖、哈尔滨工程大学优秀博士学位论文奖,受邀在第7届全国船舶与海洋工程CFD会议做大会报告,第21届国际计算流体力学大会做主题报告等,担任“Journal of Hydrodynamics”、“Modern Subsea Engineering and Technology”、《水利水电技术》3本期刊编委等职务。
教育经历:
2015年03月-2017年03月,意大利国家研究理事会-海洋技术研究所(CNR-INM,前CNR-INSEAN),国家公派联合培养博士生,导师:Andrea Colagrossi 教授
2013年09月-2018年06月,哈尔滨工程大学,船舶与海洋结构物设计制造专业,获博士学位,导师:张阿漫 教授
2009年09月-2013年07月,哈尔滨工程大学,船舶与海洋工程专业,获学士学位。
工作经历:
2020年03月-至今,中山大学,海洋工程与技术学院,副教授
2018年07月-2020年02月,法国南特中央理工大学(Ecole Centrale de Nantes),LHEEA实验室,博士后,导师:David Le Touzé教授
社会任职:
[1]《水动力学研究与进展》、《Journal of Hydrodynamics》、《Modern Subsea Engineering and Technology》、《水利水电技术》期刊编委;
[2] 2021年至今,《Mathematics》,特刊"Numerical Methods for Computational Fluid Dynamics",客座编辑
[3] 2022年,《International Journal of Ocean and Coastal Engineering》,特刊"Particle Methods and Their Applications in Ocean and Coastal Engineering",客座编辑
[4] 2022年,SPHERIC Xi’an International Workshop/光滑粒子流体动力学国际研讨会(西安).大会共同主席/Co-Chair,陕西西安,中国;
[5] 2021年,第十五届光滑粒子流体动力学国际研讨会/15th SPHERIC International Workshop,学术委员会成员,纽约,美国;
[6] 2022年,第十六届光滑粒子流体动力学国际研讨会/16th SPHERIC International Workshop,学术委员会成员,卡塔尼亚,意大利;
[7]《Journal of Computational Physics》《Computer methods in Applied Mechanics and Engineering》、《Ocean Engineering》、《Journal of Fluids and Structures》、《Applied Ocean Research》、《Computers & Fluids》等30多个SCI期刊审稿人。
[8] 中国造船工程学会会员
[9] 中国力学学会会员
获奖情况:
[1] 2022年EABE最佳论文奖(2022 Best Paper Award of Engineering Analysis with Boundary Elements), 国际学术奖, 2022
[2] 2021年第21届国际计算流体力学会议/21st IACM Computational Fluids Conference,最佳学术报告奖/Best Oral Presentation Award
[3] 2020年光滑粒子流体动力学国际在线研讨会/SPHERIC Online International Workshop,最佳学术报告奖/Best Presentation Award
[4] 2019年哈尔滨工程大学优秀博士学位论文奖
[5] 2019年“Journal of Hydrodynamics”高被引论文奖
[6] 2017年光滑粒子流体动力学国际研讨会/SPHERIC Beijing International Workshop,最佳学生论文奖/Best Student Paper Award
[7] 中山大学优秀共产党员,2021,中山大学
[8] 中山大学海洋工程与技术学院教师教学竞赛初赛二等奖,2021
学术报告
[1] 光滑粒子流体动力学及船海应用:理论、算法和通用软件开发,第七届全国船舶与海洋工程CFD会议,西北工业大学,2022.11,大会报告
[2] 海洋工程领域复杂多相流动的SPH数值模拟研究,“水波动力学”学术讲座 第七期:海洋多相流特邀学术报告,浙江大学航海学院,2022.05,特邀报告;
[3] The fundamentals of SPH and recent developments, SPHERIC Xi’an International Workshop /国际光滑粒子流体动力学研讨会, Shanxi Xi’an, 2022.03, Invited Training Day Lecture.
[4] Recent developments of Smoothed Particle Hydrodynamics method for simulating fluid structure interaction problems,2022.01, Shiraz University/伊朗西拉子大学,邀请报告;
[5] Car wading simulations using an enhanced SPH model with a robust boundary treatment for 3D complex structures,21st IACM Computational Fluids Conference (CFC 2021)/ 第21届国际计算流体力学会议,浙江大学,2021.10,主题报告/Keynote Speaker;
[6] SPH方法研究进展及其在海洋工程流固耦合问题中的应用,西北工业大学,2021.01,特邀学术报告;
[7] SPH方法研究进展及其在海洋工程流固耦合问题中的应用,大连理工大学海岸和近海工程国家重点实验室,2020.12,学术讲堂邀请报告;
[8] The δ-SPH model and its applications in complex fluid-structure interactions, SPHERIC Harbin International Workshop/国际光滑粒子流体动力学哈尔滨研讨会, Harbin, Heilongjiang, 2020.01, Invited Training Day Lecture;
[9] Seminar Series Water, Ocean, Coastal and Environmental Engineering with Geotechnics (WOCEE-G),2019,University of Manchester, UK, 邀请报告;
[10] A Multiphase SPH Model for Large Scale Bubble Dynamics in Ocean Engineering Applications, 29th International Ocean and Polar Engineering Conference (ISOPE-2019), 2019.06, Hawaii, USA,分会报告;
[11] Derivation and validation of a δ-SPH model for simulating strongly-compressible multiphase flows, 14th International SPHERIC SPH Workshop, 2019.06, Exeter, UK,主会场报告;
[12] Three-dimensional SPH modeling of gas bubble bursting on free surface, the 13th International SPHERIC SPH Workshop, 2018.06, Galway, Ireland,主会场报告;
[13] The δALE-SPH model: an improved δ-SPH scheme containing particle shifting and ALE formulation, SPHERIC Beijing International Workshop, 2017.10,中国-北京,主会场报告;
[14] Nonlinear water wave interactions with floating bodies using the δ+-SPH model,32th International Workshop on Water Waves and Floating Bodies (IWWWFB-2017),2017.04,Dalian, China,主会场报告;
二、科研项目
[1] 拉格朗日粒子与欧拉网格耦合的近场水下爆炸及结构毁伤计算新方法研究,国家自然科学基金,面上项目,2022.01至2025.12,主持
[2] 物体高速入水光滑粒子流体动力学模拟方法及气液固三相耦合机理研究,国家自然科学基金,青年项目,2021.01至2023.12,主持
[3] 国家重点研发计划子课题,2021.12至2024.12
[4] 仿生鱼自由游动力学特性的光滑粒子流体动力学数值模拟方法研究,广东省自然科学基金面上项目,2022.01至2024.12,主持
[5] 非线性波浪砰击载荷与海洋结构物的流固耦合效应研究,广州市科学技术局,2021.04至2023.03,主持
[6] 过冷液滴撞击飞溅和结冰过程的高精度SPH模拟方法研究,中国空气动力研究与发展中心结冰与防除冰重点实验室开放基金,2022.02至2023.12,主持
[7] 卷跃裹气波浪对海洋结构物砰击载荷特性的无网格SPH数值模拟研究,大连理工大学海岸和近海工程国家重点实验室开放基金,2020.08至2022.07,完成
[8] 基于多粒子分辨率SPH方法的波浪与防波堤护面块体非线性耦合运动研究,天津大学水利工程仿真与安全国家重点实验室开放基金, 2019.10至2022.10, 完成
[9] 无网格瞬态流固耦合动力学模型与计算方法研究, 哈尔滨工程大学, 2020.06至2022.06,完成
[10] 航行体水弹道研究,西北工业大学,2021.09至2021.10,完成
三、代表性论文
[1] Huang, X. T., P.N. Sun*, Hong-Guan Lyu, Shi-Yun Zhong, Study of 3D self-propulsive fish swimming using the delta-plus SPH model, Acta Mechanica Sinica, 2023, P. 722053.
[2] Lyu, HG., P.N. Sun*, Colagrossi, A. et al. Towards SPH simulations of cavitating flows with an EoSB cavitation model. Acta Mech. Sin. 2023, 39, 722158.
[3] Huang, X. T., P.N. Sun*, Lyu, H. G., & Zhang, A. M. Numerical investigations on bionic propulsion problems using the multi-resolution Delta-plus SPH model. European Journal of Mechanics-B/Fluids, 2022,95, 106-121.
[4] Lyu, H. G., P.N. Sun*, Miao, J. M., & Zhang, A. M. 3D multi-resolution SPH modeling of the water entry dynamics of free-fall lifeboats. Ocean Engineering, 2022, 257, 111648.
[5] Lyu, H. G., P.N. Sun*, Huang, X. T., Zhong, S. Y., Peng, Y. X., Jiang, T., & Ji, C. N. (2022). A review of SPH techniques for hydrodynamic simulations of ocean energy devices. Energies, 15(2), 502.
[6] Huang, X., P.N. Sun*, Lyu, H., & Zhang, A. (2022). Water Entry Problems Simulated by an Axisymmetric SPH Model with VAS Scheme. Journal of Marine Science and Application, 21(2), 1-15.
[7] HG Lyu, PN Sun*, Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows. Applied Mathematical Modelling 101 (2022): 214-238.
[8] P.N. Sun*, Le Touzé, D., Oger, G., & Zhang, A. M. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Engineering, 2021, 221, 108552. (ESI高被引论文)
[9] P.N. Sun, Le Touzé*, D., Oger, G., & Zhang, A. M. An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows. Part 1: Numerical scheme and validations with basic 1D and 2D benchmarks. Journal of Computational Physics, 2021, 426, 109937.
[10] P.N. Sun, Le Touzé*, D., Oger, G., & Zhang, A. M. An accurate SPH Volume Adaptive Scheme for modeling strongly-compressible multiphase flows. Part 2: Extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems with experimental validations. Journal of Computational Physics, 2021, 426, 109936.
[11] P.N. Sun, A. Colagrossi*, S. Marrone, M. Antuono, A.M. Zhang, Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows, Computer Physics Communications, 2018, 224: 63-80. (ESI高被引论文)
[12] P.N. Sun, A. Colagrossi*, S. Marrone, A.M. Zhang, The δplus-SPH model: simple procedures for a further improvement of the SPH scheme, Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25-49. (ESI高被引论文)
[13] HG Lyu, and PN Sun*, Huang, X. T., Chen, S. H., & Zhang, A. M. On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering. Applied Ocean Research, 2021, 117, 102938.
[14] HG Lyu, R. Deng, PN Sun*, Miao, J. M. Study on the wedge penetrating fluid interfaces characterized by different density-ratios: Numerical investigations with a multi-phase SPH model. Ocean Engineering, 2021, 237, 109538.
[15] J Cui, Chen, X., PN Sun*., Li, M. Y. Numerical investigation on the hydrodynamic behavior of a floating breakwater with moon pool through a coupling SPH model. Ocean Engineering, 2022, 248, 110849.
[16] J Cui, X Chen, PN Sun*. Numerical investigation on the hydrodynamic performance of a new designed breakwater using smoothed particle hydrodynamic method. Engineering Analysis with Boundary Elements, 2021, 130: 379-403.
[17] Cheng, H., Liu, Y., Ming, F. R., PN Sun. Investigation on the bouncing and coalescence behaviors of bubble pairs based on an improved APR-SPH method. Ocean Engineering, 2022, 255, 111401.
[18] Jiang, T.*, Li, Y., PN Sun, Ren, J. L., Li, Q., Yuan, J. Y. A corrected WCSPH scheme with improved interface treatments for the viscous/viscoelastic two-phase flows. Computational Particle Mechanics, 2021, 1-21.
[19] Antuono, M., P.N. Sun, Marrone, S., Colagrossi*, A., The δ-ALE-SPH model: An arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique. Computers & Fluids, 2021, 216, 104806.
[20] Wu, T. C., Deng, R., Luo, W. Z.*, P.N. Sun, Dai, S. S., Li, Y. L.3D-3C wake field measurement, reconstruction and spatial distribution of a Panamax Bulk using towed underwater 2D-3C SPIV. Applied Ocean Research, 2020, 105, 102437.
[21] Zifei Meng, Pingping Wang, A-Man Zhang*, Fu-Ren Ming, P.N. Sun, A multiphase SPH model based on Roe’s approximate Riemann solver for hydraulic flows with complex interface, Computer Methods in Applied Mechanics and Engineering, 2020, 365, 112999.
[22] Cheng, H., Ming, F. R.*, P.N. Sun, Sui, Y. T., Zhang, A. M. Ship hull slamming analysis with smoothed particle hydrodynamics method. Applied Ocean Research, 2020, 101, 102268.
[23] M.K Li, A.M. Zhang *, F. R. Ming, P.N. Sun. An axisymmetric multiphase SPH model for the simulation of rising bubble. Computer Methods in Applied Mechanics and Engineering, 2020,366: 113039.
[24] P.N. Sun, A. Colagrossi*, S. Marrone, M. Antuono, A.M. Zhang, A consistent approach to particle shifting in the δ-Plus-SPH model, Computer Methods in Applied Mechanics and Engineering, 2019, 348:912-934.
[25] P.N. Sun, David Le Touzé*, A.M. Zhang, Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR, Engineering Analysis with Boundary Elements, 2019,104: 240-258.
[26] P.N. Sun, A. Colagrossi*, D. Le Touzé, A.M. Zhang, Extension of SPH model for simulating Vortex-Induced-Vibration problems, Journal of Fluids and Structures, 2019, 90, 19-42.
[27] P.N. Sun, Min Luo*, David Le Touzé, A.M. Zhang, The suction effect during freak wave slamming on a fixed platform deck: smoothed particle hydrodynamics simulation and experimental study, Physics of Fluids, 2019, 31, 117108.
[28] Pingping Wang, Zifei Meng, A-Man Zhang*, Fu-Ren Ming, P.N. Sun, Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics, Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112580.
[29] H. Cheng, F.R. Ming*, P.N. Sun, P.P. Wang, A.M. Zhang, Towards the modeling of the ditching of a ground-effect wing ship within the framework of the SPH method, Applied Ocean Research, 82, 370-384, 2019.
[30] P.N. Sun, F.R. Ming*, A.M. Zhang, B. Wang. Viscous flow past a NACA0012 foil below a free surface through the Delta-plus-SPH method, International Journal of Computational Methods, 2019, 16 (02), 1846007.
[31] P.P. Wang, A.M. Zhang*, F.R. Ming, P.N. Sun, H. Cheng, A novel nonreflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics, Journal of Fluid Mechanics, 860, 81-114, 2019.
[32] Jiale Yan, Shaofan Li*, A-Man Zhang, Xingyu Kan, P.N. Sun, Updated Lagrangian Particle Hydrodynamics (ULPH) Modeling and Simulation of Multiphase Flows, Journal of Computational Physics, 2019, 393, 406-437.
[33] P.N. Sun, A.M. Zhang*, S. Marrone, F.R. Ming, An accurate and efficient SPH modeling of the water entry of circular cylinders, Applied Ocean Research, 2018, 72: 60-75.
[34] P.N. Sun, A. Colagrossi, A.M. Zhang*, Numerical simulation of the self-propulsive motion of a fishlike swimming foil using the Delta-plus-SPH model, Theoretical and Applied Mechanics Letters, 2018, 8(2).
[35] FR Ming, AM Zhang*, H Cheng, P.N. Sun, Numerical simulation of a damaged ship cabin flooding in transversal waves with Smoothed Particle Hydrodynamics method, Ocean Engineering, 2018 336-352, 165.
[36] W.T. Liu, P.N. Sun*, F.R. Ming, A.M. Zhang, Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH, Acta Mechanica Sinica, 2018, 34 (4), 601-613.
[37] A.M. Zhang*, P.N. Sun, F.R. Ming, A. Colagrossi, Smoothed particle hydrodynamics and its applications in fluid-structure interactions, Journal of Hydrodynamics, Ser. B, 29 (2), 2017,187-216. (ESI高被引论文)
[38] F.R. Ming, P.N. Sun*, A.M. Zhang, Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model, Meccanica, 52, 2017(11-12): 2665-2684.
[39] K. Guo, P.N. Sun*, X.Y. Cao, X. Huang, A 3D SPH model for simulating water flooding of a damaged floating structure, Journal of Hydrodynamics, Ser. B, 2017, 29(5): 831-844.
[40] P.N. Sun, A. Colagrossi*, S. Marrone, A.M. Zhang, Detection of Lagrangian Coherent Structures in the SPH framework, Computer Methods in Applied Mechanics and Engineering, 2016, 305: 849-868.
[41] P.N. Sun, Ming, F., Zhang, A*. Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean Engineering, 2015, 98, 32-49.
[42] A. Zhang*, P.N. Sun, F Ming. An SPH modeling of bubble rising and coalescing in three dimensions. Computer Methods in Applied Mechanics and Engineering, 2015, 294, 189-209.
[43] 黄晓婷, 孙鹏楠*, 吕鸿冠, 钟诗蕴. 基于修正光滑粒子流体动力学算法的低能量耗散数值波浪水池开发. 力学学报, 2022, 54(7), 1-14.
[44] 钟诗蕴, 孙鹏楠*, 吕鸿冠, 彭玉祥, 张阿漫. SPH 理论和方法在高速水动力学中的研究进展. 中国舰船研究, 2022, 17(3), 1-20.
[45] 黄晓婷, 孙鹏楠*, 吕鸿冠,等. 翼型绕流的多级分辨率光滑粒子流体动力学数值模拟研究[J]. 西北工业大学学报, 2022(003):040.